
IOSim and Partial Order Reduction

Marcin Szamotulski

24th February 2024

What is IOSim?

IOSim is a simulator monad that supports:

• asynchronous exceptions (including masking)

• simulated time

• timeout API

• software transaction memory (STM)

• concurrency: both low-level forkIO as well as async style

• strict STM

• access to lazy ST

• schedule discovery

• event log

• dynamic tracing

• tracing committed changes to TVar, TMVars, etc.

• labeling of threads, TVar’s, etc.

https://hackage.haskell.org/package/io-sim
https://hackage.haskell.org/package/io-sim

io-classes

io-classes provide class based monad polymorphic api which allows
to write code which can be executed both in IO and IOSim.

withAsyncs :: MonadAsync m

=> [m a]

-> ([Async m a] -> m b)

-> m b

withAsyncs xs0 action = go [] xs0

where

go as [] = action (reverse as)

go as (x:xs) = withAsync x (\a -> go (a:as) xs)

We also developed a few extensions which are packaged as a
seprate libraries: strict-stm, strict-mvar, si-timers.

https://hackage.haskell.org/package/io-clases
https://hackage.haskell.org/package/strict-stm
https://hackage.haskell.org/package/strict-mvar
https://hackage.haskell.org/package/si-timers

IOSim - trace

sim :: (MonadLabelledSTM m,

MonadTimer m,

MonadTraceSTM m,

MonadSay m) => m ()

sim = do

d <- registerDelay 1_000_000

labelTVarIO d "delayVar"

traceTVarIO d (_ a -> pure (TraceString (show a)))

atomically (readTVar d >>= check)

say "Arr, land ho!"

IOSim - trace

sim :: (MonadLabelledSTM m,

MonadTimer m,

MonadTraceSTM m,

MonadSay m) => m ()

sim = do

d <- registerDelay 1_000_000

labelTVarIO d "delayVar"

traceTVarIO d (_ a -> pure (TraceString (show a)))

atomically (readTVar d >>= check)

say "Arr, land ho!"

0s - Thread [] main - RegisterDelayCreated TimeoutId 0 TVarId 0 Time 1s

0s - Thread [] main - TxBlocked [Labelled TVarId 0 delayVar]

0s - Thread [] main - Deschedule Blocked BlockedOnSTM

IOSim - trace

sim :: (MonadLabelledSTM m,

MonadTimer m,

MonadTraceSTM m,

MonadSay m) => m ()

sim = do

d <- registerDelay 1_000_000

labelTVarIO d "delayVar"

traceTVarIO d (_ a -> pure (TraceString (show a)))

atomically (readTVar d >>= check)

say "Arr, land ho!"

0s - Thread [] main - RegisterDelayCreated TimeoutId 0 TVarId 0 Time 1s

0s - Thread [] main - TxBlocked [Labelled TVarId 0 delayVar]

0s - Thread [] main - Deschedule Blocked BlockedOnSTM

1s - Thread [-1] register delay timer - Say True

1s - Thread [-1] register delay timer - RegisterDelayFired TimeoutId 0

IOSim - trace

sim :: (MonadLabelledSTM m,

MonadTimer m,

MonadTraceSTM m,

MonadSay m) => m ()

sim = do

d <- registerDelay 1_000_000

labelTVarIO d "delayVar"

traceTVarIO d (_ a -> pure (TraceString (show a)))

atomically (readTVar d >>= check)

say "Arr, land ho!"

0s - Thread [] main - RegisterDelayCreated TimeoutId 0 TVarId 0 Time 1s

0s - Thread [] main - TxBlocked [Labelled TVarId 0 delayVar]

0s - Thread [] main - Deschedule Blocked BlockedOnSTM

1s - Thread [-1] register delay timer - Say True

1s - Thread [-1] register delay timer - RegisterDelayFired TimeoutId 0

1s - Thread [] main - TxWakeup [Labelled TVarId 0 delayVar]

1s - Thread [] main - TxCommitted [] []

1s - Thread [] main - Unblocked []

1s - Thread [] main - Deschedule Yield

1s - Thread [] main - Say Arr, land ho!

1s - Thread [] main - ThreadFinished

1s - Thread [] main - MainReturn () []

Partial Order Reduction

• segment execution into execution steps, e.g. an STM action

• deterministic scheduling policy

• discovery of execution races which depends on execution steps
partial order

• techniques to only run executions which can lead to new
program states

• instrumentation to follow discovered schedules

Execution Step

data Step = Step {

stepThreadId :: IOSimThreadId,

stepStep :: Int,

stepEffect :: Effect,

-- ^ which effects where executed by this steps, e.g.

-- `TVar` reads / writes, forks, throws or wakeups.

stepVClock :: VectorClock

-- ^ vector clock of the thread at the time when

-- the step was executed.

}

deriving Show

IOSimPOR thread scheduler will run one thread at a time, and
collect Step for the period while the thread is being executed.

Execution Step
Life cycle of a Step

• when a thread is descheduled:
• forking a new thread
• thread termination
• setting the masking state to interruptible
• popping masking frame (which resets masking state)
• thread delays
• execution of an STM transaction
• blocking throwTo

• throw an exception when there’s a corresponding catch frame
(i.e. catch handler)

Execution Step
Effect

data Effect = Effect {

effectReads :: Set TVarId,

effectWrites :: Set TVarId,

effectForks :: Set IOSimThreadId,

effectThrows :: [IOSimThreadId],

effectWakeup :: Set IOSimThreadId

}

Execution Step
Effect

data Effect = Effect {

effectReads :: Set TVarId,

effectWrites :: Set TVarId,

effectForks :: Set IOSimThreadId,

effectThrows :: [IOSimThreadId],

effectWakeup :: Set IOSimThreadId

}

racingEffects :: Effect -> Effect -> Bool

racingEffects e e' =

-- both effects throw to the same threads

effectThrows e `intersects` effectThrows e'

-- concurrent reads & writes of the same TVars

|| effectReads e `intersects` effectWrites e'

|| effectWrites e `intersects` effectReads e'

-- concurrent writes to the same TVars

|| effectWrites e `intersects` effectWrites e'

where

intersects :: (Foldable f, Eq a) => f a -> f a -> Bool

intersects a b = not . null $ toList a `List.intersect` toList b

Execution Step
Causality

source WikiPedia: Vector Clocks

Extension of Leslie Lamport’s logical clocks.

https://en.wikipedia.org/wiki/Vector_clock

Execution Step
Vector Clocks

newtype VectorClock = VectorClock {

getVectorClock :: Map IOSimThreadId Int

}

leastUpperBoundVClock :: VectorClock

-> VectorClock

-> VectorClock

leastUpperBoundVClock (VectorClock m) (VectorClock m') =

VectorClock (Map.unionWith max m m')

For example

ThrowTo e tid' k -> do

let thread' = thread {

threadEffect = effect <> throwToEffect tid'

<> wakeUpEffect,

threadVClock =

vClock `leastUpperBoundVClock` vClockTgt

...

}

vClockTgt = threadVClock (threads Map.! tid')

IOSimPOR Schedule Policy

Run not blocked thread with the smallest ThreadId.

data IOSimThreadId =

RacyThreadId [Int]

-- | A non racy thread. They have higher priority than

-- racy threads in `IOSimPOR` scheduler.

| ThreadId [Int]

mainThread :: IOSimThreadId

mainThread = ThreadId []

-- second child of `RacyThread [1]`

threadId = RacyThreadId [1,2]

As a consequence a thread will be scheduled until it is blocked.

Races
data StepInfo = StepInfo {

-- | Step that we want to reschedule to run after a step in

-- `stepInfoRaces`.

stepInfoStep :: Step,

-- | Control information when we reach this step.

stepInfoControl :: ScheduleControl,

-- | Threads that are still concurrent with this step.

stepInfoConcurrent :: Set IOSimThreadId,

-- | Steps following this one that did not happen after it

-- (in reverse order).

stepInfoNonDep :: [Step],

-- | Later steps that race with `stepInfoStep`.

stepInfoRaces :: [Step] }

Races
data StepInfo = StepInfo {

-- | Step that we want to reschedule to run after a step in

-- `stepInfoRaces`.

stepInfoStep :: Step,

-- | Control information when we reach this step.

stepInfoControl :: ScheduleControl,

-- | Threads that are still concurrent with this step.

stepInfoConcurrent :: Set IOSimThreadId,

-- | Steps following this one that did not happen after it

-- (in reverse order).

stepInfoNonDep :: [Step],

-- | Later steps that race with `stepInfoStep`.

stepInfoRaces :: [Step] }

New schedules are constructed from stepInfoRaces and
stepInfoNonDep:

[takeWhile (/=stepStepId racingStep)

(stepStepId <$> reverse stepInfoNonDep)

++ [stepStepId racingStep]

| racingStep <- stepInfoRaces]

Races
Recording new StepInfo in active races

-- A new step to add to the `activeRaces` list.

newStepInfo :: Maybe StepInfo

newStepInfo | isNotRacyThreadId tid = Nothing

| Set.null concurrent = Nothing

| isBlocking = Nothing

| otherwise =

Just StepInfo { stepInfoStep = newStep,

stepInfoControl = control,

stepInfoConcurrent = concurrent,

stepInfoNonDep = [],

stepInfoRaces = []

}

where

concurrent :: Set IOSimThreadId

concurrent = concurrent0 Set.\\ effectWakeup newEffect

isBlocking :: Bool

isBlocking = isThreadBlocked thread

&& onlyReadEffect newEffect

Races
Updating already recorded active races

With every new step, we need to update existing information
recorded in StepInfo.

let theseStepsRace = step `racingSteps` newStep

-- `step` happened before `newStep` (`newStep` happened after

-- `step`)

happensBefore = step `happensBeforeStep` newStep

-- `newStep` happens after any of the racing steps

afterRacingStep = any (`happensBeforeStep` newStep) stepInfoRaces

• update stepInfoConcurrent

• update stepInfoNonDep

• update stepInfoRaces

Races
Updating already recorded active races

With every new step, we need to update existing information
recorded in StepInfo.

let theseStepsRace = step `racingSteps` newStep

-- `step` happened before `newStep` (`newStep` happened after

-- `step`)

happensBefore = step `happensBeforeStep` newStep

-- `newStep` happens after any of the racing steps

afterRacingStep = any (`happensBeforeStep` newStep) stepInfoRaces

• update stepInfoConcurrent
let -- We will only record the first race with each thread.

-- Reversing the first race makes the next race detectable.

-- Thus we remove a thread from the concurrent set after the

-- first race.

concurrent'

| happensBefore = Set.delete tid concurrent

Set.\\ effectWakeup newEffect

| theseStepsRace = Set.delete tid concurrent

| afterRacingStep = Set.delete tid concurrent

| otherwise = concurrent

• update stepInfoNonDep

• update stepInfoRaces

Races
Updating already recorded active races

With every new step, we need to update existing information
recorded in StepInfo.

let theseStepsRace = step `racingSteps` newStep

-- `step` happened before `newStep` (`newStep` happened after

-- `step`)

happensBefore = step `happensBeforeStep` newStep

-- `newStep` happens after any of the racing steps

afterRacingStep = any (`happensBeforeStep` newStep) stepInfoRaces

• update stepInfoConcurrent
• update stepInfoNonDep

let stepInfoNonDep'

-- `newStep` happened after `step`

| happensBefore = stepInfoNonDep

-- `newStep` did not happen after `step`

| otherwise = newStep : stepInfoNonDep

• update stepInfoRaces

Races
Updating already recorded active races

With every new step, we need to update existing information
recorded in StepInfo.

let theseStepsRace = step `racingSteps` newStep

-- `step` happened before `newStep` (`newStep` happened after

-- `step`)

happensBefore = step `happensBeforeStep` newStep

-- `newStep` happens after any of the racing steps

afterRacingStep = any (`happensBeforeStep` newStep) stepInfoRaces

• update stepInfoConcurrent

• update stepInfoNonDep
• update stepInfoRaces

let -- Here we record discovered races. We only record new

-- race if we are following the default schedule, to avoid

-- finding the same race in different parts of the search

-- space.

stepInfoRaces'

| theseStepsRace && isDefaultSchedule control

= newStep : stepInfoRaces

| otherwise = stepInfoRaces

Example

sim :: IOSim s ()

sim = do

exploreRaces

v <- newTVarIO False

forkIO (atomically $ writeTVar v True)

forkIO (readTVarIO v >>= say . show)

-- wait for both threads to terminate.

threadDelay 1_000_000

quickCheck $ exploreSimTrace

(\a -> a { explorationDebugLevel = 1 })

sim

(_ _ -> True)

Example: default schedule

[].0 create TVar 0

0s - Thread [].0 main - SimStart ControlDefault

0s - Thread [].0 main - TxCommitted [] [TVarId 0] Effect { }

0s - Thread [].0 main - Unblocked []

0s - Thread [].0 main - Deschedule Yield

0s - Thread [].0 main - Effect VectorClock [Thread [].0]

Effect { }

Example: default schedule

[].0 create TVar 0

[].1 fork Thread {1}

0s - Thread [].1 main - ThreadForked Thread {1}

0s - Thread [].1 main - Deschedule Yield

0s - Thread [].1 main - Effect VectorClock [Thread [].1]

Effect { forks = [Thread {1}] }

Example: default schedule

[].0 create TVar 0

[].1

[].2 fork Thread {2}

0s - Thread [].2 main - ThreadForked Thread {2}

0s - Thread [].2 main - Deschedule Yield

0s - Thread [].2 main - Effect VectorClock [Thread [].2]

Effect { forks = [Thread {2}] }

Example: default schedule

[].0 create TVar 0

[].1

[].2

[].3 threadDelay 106

0s - Thread [].3 main - ThreadDelay TimeoutId 0 Time 1s

0s - Thread [].3 main - Effect VectorClock [Thread [].3]

Effect { }

Example: default schedule

[].0 create TVar 0

[].1

[].2

[].3 {2}.0 read TVar 0

data StepInfo = StepInfo {

stepInfoStep = Step ({2}.0),

stepInfoControl = DefaultControl,

stepInfoConcurrent = Set.fromList

[[], {1}, {2}],

stepInfoNonDep = [],

stepInfoRaces = []

}

0s - Thread {2}.0 - TxCommitted [] []

Effect { reads = fromList [TVarId 0] }

0s - Thread {2}.0 - Unblocked []

0s - Thread {2}.0 - Deschedule Yield

0s - Thread {2}.0 - Effect VectorClock [Thread {2}.0,

Thread [].2]

Effect { reads = fromList [TVarId 0] }

Example: default schedule

[].0 create TVar 0

[].1

[].2

[].3 {2}.0 read TVar 0

{2}.1

data StepInfo = StepInfo {

stepInfoStep = Step ({2}.0),

stepInfoControl = DefaultControl,

stepInfoConcurrent = Set.fromList

[[], {1}],

stepInfoNonDep = [],

stepInfoRaces = []

}

0s - Thread {2}.1 - Say False

0s - Thread {2}.1 - ThreadFinished

0s - Thread {2}.1 - Deschedule Terminated

0s - Thread {2}.1 - Effect VectorClock [Thread {2}.1,

Thread [].2]

Effect { }

Example: default schedule

[].0 create TVar 0

[].1

[].2

[].3 {1}.0 write TVar 0{2}.0 read TVar 0

{2}.1

data StepInfo = StepInfo {

stepInfoStep = Step ({2}.0),

stepInfoControl = DefaultControl,

stepInfoConcurrent = Set.fromList

[[], {1}],

stepInfoNonDep = [{1}.0],

stepInfoRaces = [{1}.0]

}

0s - Thread {1}.0 - TxCommitted [TVarId 0] []

Effect { writes = fromList [TVarId 0] }

0s - Thread {1}.0 - Unblocked []

0s - Thread {1}.0 - Deschedule Yield

0s - Thread {1}.0 - Effect VectorClock [Thread {1}.0,

Thread [].1]

Effect { writes = fromList [TVarId 0] }

Example: default schedule

[].0 create TVar 0

[].1

[].2

[].3 {1}.0 write TVar 0

{1}.1

{2}.0 read TVar 0

{2}.1

data StepInfo = StepInfo {

stepInfoStep = Step ({2}.0),

stepInfoControl = DefaultControl,

stepInfoConcurrent = Set.fromList

[[]],

stepInfoNonDep = [{1}.0],

stepInfoRaces = [{1}.0]

}

0s - Thread {1}.1 - ThreadFinished

0s - Thread {1}.1 - Deschedule Terminated

0s - Thread {1}.1 - Effect VectorClock [Thread {1}.1,

Thread [].1]

Effect { }

RacesFound [ControlAwait [ScheduleMod (RacyThreadId [2],0)

ControlDefault

[(RacyThreadId [1],0)]]]

Example: default schedule

[].0 create TVar 0

[].1

[].2

[].3 {1}.0 write TVar 0

{1}.1

{2}.0 read TVar 0

{2}.1

data StepInfo = StepInfo {

stepInfoStep = Step ({2}.0),

stepInfoControl = DefaultControl,

stepInfoConcurrent = Set.fromList

[[]],

stepInfoNonDep = [{1}.0],

stepInfoRaces = [{1}.0]

}

1s - Thread [].- thread delay timer - ThreadDelayFired

TimeoutId 0

Example: default schedule

[].0 create TVar 0

[].1

[].2

[].3

[].4

{1}.0 write TVar 0

{1}.1

{2}.0 read TVar 0

{2}.1

data StepInfo = StepInfo {

stepInfoStep = Step ({2}.0),

stepInfoControl = DefaultControl,

stepInfoConcurrent = Set.fromList

[[]],

stepInfoNonDep = [{1}.0],

stepInfoRaces = [{1}.0]

}

1s - Thread [].4 main - ThreadFinished

1s - Thread [] main - MainReturn () []

Example: discovered schedule

[].0 create TVar 0

0s - Thread [].0 main - SimStart ControlAwait

[ScheduleMod (RacyThreadId [2],0)

ControlDefault

[(RacyThreadId [1],0)]]

0s - Thread [].0 main - TxCommitted [] [TVarId 0] Effect { }

0s - Thread [].0 main - Unblocked []

0s - Thread [].0 main - Deschedule Yield

0s - Thread [].0 main - Effect VectorClock [Thread [].0]

Effect { }

Example: discovered schedule

[].0 create TVar 0

[].1 fork Thread {1}

0s - Thread [].1 main - ThreadForked Thread {1}

0s - Thread [].1 main - Deschedule Yield

0s - Thread [].1 main - Effect VectorClock [Thread [].1]

Effect { forks = [Thread {1}] }

Example: discovered schedule

[].0 create TVar 0

[].1

[].2 fork Thread {2}

0s - Thread [].2 main - ThreadForked Thread {2}

0s - Thread [].2 main - Deschedule Yield

0s - Thread [].2 main - Effect VectorClock [Thread [].2]

Effect { forks = [Thread {2}] }

Example: discovered schedule

[].0 create TVar 0

[].1

[].2

[].3 threadDelay 106

0s - Thread [].3 main - ThreadDelay TimeoutId 0 Time 1s

0s - Thread [].3 main - Effect VectorClock [Thread [].3]

Effect { }

Example: discovered schedule

[].0 create TVar 0

[].1

[].2

[].3

0s - Thread {2}.0 - FollowControl ControlAwait

[ScheduleMod (RacyThreadId [2],0)

ControlDefault

[(RacyThreadId [1],0)]]

0s - Thread {2}.0 - AwaitControl Thread {2}.0 ControlFollow [(RacyThreadId [1],0)] []

0s - Thread {2}.0 - Deschedule Sleep

Example: discovered schedule

[].0 create TVar 0

[].1

[].2

[].3 {1}.0 write TVar 0

0s - Thread {1}.0 - Reschedule ControlFollow

[(RacyThreadId [1],0)] []

0s - Thread {1}.0 - PerformAction Thread {1}.0

0s - Thread {1}.0 - TxCommitted [TVarId 0] []

Effect { writes = fromList [TVarId 0] }

0s - Thread {1}.0 - Unblocked []

0s - Thread {1}.0 - Deschedule Yield

0s - Thread {1}.0 - Effect

VectorClock [Thread {1}.0,

Thread [].1]

Effect { writes = fromList [TVarId 0] }

Example: discovered schedule

[].0 create TVar 0

[].1

[].2

[].3 {1}.0 write TVar 0{2}.0
read TVar 0

0s - Thread {2}.0 - TxCommitted [] []

Effect { reads = fromList [TVarId 0] }

0s - Thread {2}.0 - Unblocked []

0s - Thread {2}.0 - Deschedule Yield

0s - Thread {2}.0 - Effect

VectorClock [Thread {1}.0,

Thread {2}.0,

Thread [].2]

Effect { reads = fromList [TVarId 0] }

Example: discovered schedule

[].0 create TVar 0

[].1

[].2

[].3 {1}.0 write TVar 0{2}.0
read TVar 0

{2}.1

0s - Thread {2}.1 - Say True

0s - Thread {2}.1 - ThreadFinished

0s - Thread {2}.1 - Deschedule Terminated

0s - Thread {2}.1 - Effect

VectorClock [Thread {1}.0,

Thread {2}.1,

Thread [].2]

Effect { }

Example: discovered schedule

[].0 create TVar 0

[].1

[].2

[].3 {1}.0 write TVar 0

{1}.1

{2}.0
read TVar 0

{2}.1

0s - Thread {1}.1 - ThreadFinished

0s - Thread {1}.1 - Deschedule Terminated

0s - Thread {1}.1 - Effect

VectorClock [Thread {1}.1,

Thread [].1]

Effect { }

RacesFound [ControlAwait

[ScheduleMod (RacyThreadId [2],0)

ControlDefault

[(RacyThreadId [1],0)]]]

Example: discovered schedule

[].0 create TVar 0

[].1

[].2

[].3 {1}.0 write TVar 0

{1}.1

{2}.0
read TVar 0

{2}.1

1s - Thread [].- thread delay timer -

ThreadDelayFired TimeoutId 0

Example: discovered schedule

[].0 create TVar 0

[].1

[].2

[].3

[].4

{1}.0 write TVar 0

{1}.1

{2}.0
read TVar 0

{2}.1

1s - Thread [].4 main - ThreadFinished

RacesFound []

1s - Thread [] main - MainReturn () []

Example 2

sim :: IOSim s ()

sim = do

exploreRaces

v0 <- newTVarIO False

v1 <- newTVarIO False

forkIO (do atomically (writeTVar v0 True) -- Thread {1}.0

atomically (readTVar v1) -- Thread {1}.1

>>= say . show . ("v1",))

forkIO (do atomically (writeTVar v1 True) -- Thread {2}.0

atomically (readTVar v0) -- Thread {2}.1

>>= say . show . ("v0",))

-- wait for both threads to terminate.

threadDelay 1_000_000

Example 2

Three schedules:

• ControlDefault

("v0", False)

("v1", True)

• ScheduleMod (RacyThreadId [2],1) ControlDefault

[(RacyThreadId [1],0)]]

("v0", True)

("v1", True)

• ScheduleMod (RacyThreadId [2],0) ControlDefault

[(RacyThreadId [1],0),(RacyThreadId [1],1)]

("v0", True)

("v1", False)

Example 2

Three schedules:

• ControlDefault

("v0", False)

("v1", True)

• ScheduleMod (RacyThreadId [2],1) ControlDefault

[(RacyThreadId [1],0)]]

("v0", True)

("v1", True)

• ScheduleMod (RacyThreadId [2],0) ControlDefault

[(RacyThreadId [1],0),(RacyThreadId [1],1)]

("v0", True)

("v1", False)

Example 2

Three schedules:

• ControlDefault

("v0", False)

("v1", True)

• ScheduleMod (RacyThreadId [2],1) ControlDefault

[(RacyThreadId [1],0)]]

("v0", True)

("v1", True)

• ScheduleMod (RacyThreadId [2],0) ControlDefault

[(RacyThreadId [1],0),(RacyThreadId [1],1)]

("v0", True)

("v1", False)

Example 2

Three schedules:

• ControlDefault

("v0", False)

("v1", True)

• ScheduleMod (RacyThreadId [2],1) ControlDefault

[(RacyThreadId [1],0)]]

("v0", True)

("v1", True)

• ScheduleMod (RacyThreadId [2],0) ControlDefault

[(RacyThreadId [1],0),(RacyThreadId [1],1)]

("v0", True)

("v1", False)

Fair winds and following seas, me
mateys!

https://coot.me

https://coot.me

