|OSim and Partial Order Reduction

Marcin Szamotulski

E@ NPUT [OUTPUT
OR40
S

24th February 2024



What is [OSim?

I0Sim is a simulator monad that supports:
® asynchronous exceptions (including masking)
® simulated time
® timeout API
e software transaction memory (STM)
® concurrency: both low-level forkIO0 as well as async style
® strict STM
® access to lazy ST
® schedule discovery
® event log
® dynamic tracing
® tracing committed changes to TVar, TMVars, etc.

® |abeling of threads, TVar's, etc.


https://hackage.haskell.org/package/io-sim
https://hackage.haskell.org/package/io-sim

io-classes

io-classes provide class based monad polymorphic api which allows
to write code which can be executed both in I0 and I0Sim.

withAsyncs :: MonadAsync m
=> [m a]
-> ([Async m a] -> m b)
->mb
withAsyncs xsO action = go [] xs0
where
go as []
go as (x:xs)

action (reverse as)
withAsync x (\a -> go (a:as) xs)

We also developed a few extensions which are packaged as a
seprate libraries: strict-stm, strict-mvar, si-timers.


https://hackage.haskell.org/package/io-clases
https://hackage.haskell.org/package/strict-stm
https://hackage.haskell.org/package/strict-mvar
https://hackage.haskell.org/package/si-timers

|[OSim - trace

sim :: (MonadLabelledSTM m,
MonadTimer m,
MonadTraceSTM m,
MonadSay m) => m ()
sim = do
d <- registerDelay 1_000_000
labelTVarIO d "delayVar"
traceTVarIO d (\_ a -> pure (TraceString (show a)))
atomically (readTVar d >>= check)
say "Arr, land ho!"



|[OSim - trace

sim :: (MonadLabelledSTM m,
MonadTimer m,
MonadTraceSTM m,
MonadSay m) => m ()
sim = do
d <- registerDelay 1_000_000
labelTVarIO d "delayVar"
traceTVarIO d (\_ a -> pure (TraceString (show a)))
atomically (readTVar d >>= check)
say "Arr, land ho!"

Os - Thread [] main - RegisterDelayCreated TimeoutId O TVarId O Time 1s
Os - Thread [] main - TxBlocked [Labelled TVarId O delayVar]
Os - Thread [] main - Deschedule Blocked BlockedOnSTM



sim

sim

Os -
Os -
Os -

1s -
1s -

|[OSim - trace

(MonadLabelledSTM m,
MonadTimer m,
MonadTraceSTM m,
MonadSay m) => m ()

= do

d <- registerDelay 1_000_000

labelTVarIO d "delayVar"

traceTVarIO d (\_ a -> pure (TraceString (show a)))
atomically (readTVar d >>= check)

say "Arr,

Thread
Thread
Thread

Thread
Thread

0
0
0

-
|

land ho!"

main - RegisterDelayCreated TimeoutId O TVarId O Time 1s
main - TxBlocked [Labelled TVarId O delayVar]
main - Deschedule Blocked BlockedOnSTM

register delay timer - Say True
register delay timer - RegisterDelayFired TimeoutId O



sim

|[OSim - trace

:: (MonadLabelledSTM m,
MonadTimer m,
MonadTraceSTM m,
MonadSay m) => m ()

sim = do
d <- registerDelay 1_000_000

labelTVarIO d "delayVar"

traceTVarIO d (\_ a -> pure (TraceString (show a)))
atomically (readTVar d >>= check)

say "Arr, land ho!"

1s
1s

1s
1s
1s
1s
1s

1s

Thread
Thread
Thread

Thread
Thread

Thread
Thread
Thread
Thread
Thread
Thread
Thread

0
0
0

main - RegisterDelayCreated TimeoutId O TVarId O Time 1s
main - TxBlocked [Labelled TVarId O delayVar]
main - Deschedule Blocked BlockedOnSTM

register delay timer - Say True
register delay timer - RegisterDelayFired TimeoutId O

main
main
main
main
main
main
main

TxWakeup [Labelled TVarId O delayVar]
TxCommitted [1 []

Unblocked []

Deschedule Yield

Say Arr, land ho!

ThreadFinished

MainReturn () []



Partial Order Reduction

segment execution into execution steps, e.g. an STM action
deterministic scheduling policy

discovery of execution races which depends on execution steps
partial order

techniques to only run executions which can lead to new
program states

instrumentation to follow discovered schedules



Execution Step

data Step = Step {
stepThreadId :: I0SimThreadId,
stepStep :: Int,
stepEffect :: Effect,
-- 7 which effects where executed by this steps, e.g.
-- "TVar® reads / writes, forks, throws or wakeups.
stepVClock :: VectorClock
-— 7 vector clock of the thread at the time when
-— the step was executed.

}

deriving Show

I0SimPOR thread scheduler will run one thread at a time, and
collect Step for the period while the thread is being executed.



Execution Step
Life cycle of a Step

® when a thread is descheduled:

forking a new thread

thread termination

setting the masking state to interruptible

popping masking frame (which resets masking state)
thread delays

execution of an STM transaction

blocking throwTo

® throw an exception when there's a corresponding catch frame

(i.e.

catch handler)



Execution Step

Effect
data Effect = Effect {
effectReads :: Set TVarld,
effectWrites :: Set TVarld,
effectForks :: Set I0SimThreadId,

effectThrows :: [I0SimThreadId],
effectWakeup :: Set I0SimThreadId



Execution Step

Effect
data Effect = Effect {
effectReads :: Set TVarld,
effectWrites :: Set TVarld,
effectForks :: Set I0SimThreadId,

effectThrows :: [I0SimThreadId],
effectWakeup :: Set I0SimThreadId
}

racingEffects :: Effect -> Effect -> Bool
racingEffects e e' =
-— both effects throw to the same threads
effectThrows e “intersects™ effectThrows e'
-- concurrent reads & writes of the same TVars
effectReads e “intersects™ effectWrites e'
effectWrites e “intersects™ effectReads e'
-- concurrent writes to the same TVars
|| effectWrites e “intersects™ effectWrites e'
where
intersects :: (Foldable f, Eq a) => f a -> £ a -> Bool
intersects a b = not . null $ toList a ~List.intersect”™ tolist b



Execution Step
Causality

Extension of Leslie Lamport's logical clocks.

source WikiPedia: Vector Clocks


https://en.wikipedia.org/wiki/Vector_clock

Execution Step
Vector Clocks

newtype VectorClock = VectorClock {
getVectorClock :: Map IO0OSimThreadId Int
b
leastUpperBoundVClock :: VectorClock
-> VectorClock
-> VectorClock
leastUpperBoundVClock (VectorClock m) (VectorClock m') =
VectorClock (Map.unionWith max m m')

For example

ThrowTo e tid' k -> do
let thread' = thread {
threadEffect = effect <> throwToEffect tid'
<> wakeUpEffect,
threadVClock =
vClock "leastUpperBoundVClock™ vClockTgt

}
vClockTgt = threadVClock (threads Map.! tid')



|OSimPOR Schedule Policy

Run not blocked thread with the smallest ThreadId.

data IOSimThreadId =
RacyThreadId [Int]
-= | A non racy thread. They have higher priority than
-- racy threads in “I0SimPOR" scheduler.
| ThreadId [Int]

mainThread :: I0SimThreadId
mainThread = ThreadId []

-- second child of “RacyThread [1]°
threadId = RacyThreadId [1,2]

As a consequence a thread will be scheduled until it is blocked.



Races

data StepInfo = StepInfo {
-- | Step that we want to reschedule to run after a step in

-- “stepInfoRaces”.

stepInfoStep :: Step,

-- | Control information when we reach this step.
stepInfoControl :: ScheduleControl,

-- | Threads that are still concurrent with this step.
stepInfoConcurrent :: Set I0SimThreadId,

-- | Steps following this one that did not happen after it
-- (in reverse order).

stepInfoNonDep :: [Stepl,

-- | Later steps that race with ~stepInfoStep.
stepInfoRaces :: [Stepl }



Races

data StepInfo = StepInfo {
-- | Step that we want to reschedule to run after a step in

-- “stepInfoRaces”.

stepInfoStep :: Step,

-- | Control information when we reach this step.
stepInfoControl :: ScheduleControl,

-- | Threads that are still concurrent with this step.
stepInfoConcurrent :: Set I0SimThreadId,

-- | Steps following this one that did not happen after it
-- (in reverse order).

stepInfoNonDep :: [Stepl,
-- | Later steps that race with ~stepInfoStep.
stepInfoRaces :: [Stepl }

New schedules are constructed from stepInfoRaces and
stepInfoNonDep:

[ takeWhile (/=stepStepIld racingStep)
(stepStepId <$> reverse stepInfoNonDep)
++ [stepStepId racingStep]
| racingStep <- stepInfoRaces ]



Races

Recording new Steplnfo in active races

-- A new step to add to the “activeRaces™ 1list.
newStepInfo :: Maybe SteplInfo

newStepInfo | isNotRacyThreadId tid = Nothing
| Set.null concurrent = Nothing
| isBlocking = Nothing
| otherwise =
Just StepInfo { stepInfoStep = newStep,
stepInfoControl = control,
stepInfoConcurrent = concurrent,
stepInfoNonDep =[],
stepInfoRaces = []
X
where
concurrent :: Set I0SimThreadId

concurrent = concurrentO Set.\\ effectWakeup newEffect
isBlocking :: Bool
isBlocking = isThreadBlocked thread

&% onlyReadEffect newEffect



Races

Updating already recorded active races

With every new step, we need to update existing information
recorded in StepInfo.

let

theseStepsRace = step “racingSteps™ newStep

-- “step” happened before “newStep  (‘newStep  happened after

-- “step’)

happensBefore = step “happensBeforeStep™ newStep

-- "newStep” happens after any of the racing steps
afterRacingStep = any ( happensBeforeStep™ newStep) stepInfoRaces



Races

Updating already recorded active races

With every new step, we need to update existing information
recorded in StepInfo.

let

theseStepsRace = step “racingSteps™ newStep

-- “step” happened before “newStep  (‘newStep  happened after

-- “step’)

happensBefore = step “happensBeforeStep™ newStep

-- "newStep” happens after any of the racing steps
afterRacingStep = any ( happensBeforeStep™ newStep) stepInfoRaces

® update stepInfoConcurrent

let -- We will only record the first race with each thread.
-- Reversing the first race makes the next race detectable.
-- Thus we remove a thread from the concurrent set after the
-- first race.

concurrent'
| happensBefore = Set.delete tid concurrent
Set.\\ effectWakeup newEffect
| theseStepsRace = Set.delete tid concurrent

afterRacingStep = Set.delete tid concurrent
otherwise = concurrent



Races

Updating already recorded active races

With every new step, we need to update existing information
recorded in StepInfo.

let

theseStepsRace = step “racingSteps™ newStep

-- “step” happened before “newStep  (‘newStep  happened after

-- “step’)

happensBefore = step “happensBeforeStep™ newStep

-- "newStep” happens after any of the racing steps
afterRacingStep = any ( happensBeforeStep™ newStep) stepInfoRaces

® update stepInfoConcurrent
® update stepInfoNonDep

let stepInfoNonDep'
-- “newStep” happened after “step”
| happensBefore = stepInfoNonDep
-- "newStep” did not happen after “step”
| otherwise = newStep : stepInfoNonDep



Races
Updating already recorded active races

With every new step, we need to update existing information
recorded in StepInfo.

let theseStepsRace = step “racingSteps™ newStep
-- “step” happened before “newStep  (‘newStep  happened after
-- “step’)
happensBefore = step “happensBeforeStep™ newStep
-- "newStep” happens after any of the racing steps
afterRacingStep = any ( happensBeforeStep™ newStep) stepInfoRaces

® update stepInfoConcurrent

® update stepInfoNonDep
® update stepInfoRaces

let -- Here we record discovered races. We only record new

-- race if we are following the default schedule, to avoid
-- finding the same race in different parts of the search
-- space.
stepInfoRaces'

| theseStepsRace && isDefaultSchedule control

= newStep : stepInfoRaces
| otherwise = stepInfoRaces



Example

sim :: I0Sim s ()

sim = do
exploreRaces
v <- newIVarIQO False
forkIO (atomically $ writeTVar v True)
forkIO (readTVarIO v >>= say . show)
-— wait for both threads to terminate.
threadDelay 1_000_000

quickCheck $ exploreSimTrace
(\a -> a { explorationDebuglevel = 1 })
sim
(\_ _ -> True)



[] . 0 create TVar 0O

Example: default

Os
Os

Os
Os

Thread
Thread
Thread
Thread
Thread

.
0
0
0
0.

coooo

schedule

main
main
main
main
main

SimStart ControlDefault

TxCommitted [] [TVarId 0] Effect { }

Unblocked []

Deschedule Yield

Effect VectorClock [Thread [].0]
Effect { }



Example: default schedule

Os - Thread [].1 main - ThreadForked Thread {1}

Os - Thread [].1 main - Deschedule Yield

Os - Thread [].1 main - Effect VectorClock [Thread [].1]
Effect { forks = [Thread {1}] }

[] . 0 create TVar 0O

\

[] .1 fork Thread {1}



Example: default schedule

Os - Thread [].2 main - ThreadForked Thread {2}
Os - Thread [].2 main - Deschedule Yield
Os - Thread [].2 main - Effect VectorClock [Thread [].2]

[]0 create TVar 0 Effect { forks = [Thread {2}] }

\

.1
\

[] .2 fork Thread {2}



[] . 0 create TVar 0O

\

.1
\

.2
\

[]3 threadDelay 100

Example: default schedule

Os - Thread [].3 main - ThreadDelay TimeoutId O Time 1s
Os - Thread [].3 main - Effect VectorClock [Thread [J.3]
Effect { }



Example: default schedule

[] . 0 create TVar 0O

\
.1
\
[l:2

\
[]3 {2}0 read TVar O

data StepInfo = StepInfo {

Os

Os

Os

stepInfoStep
stepInfoControl

= Step ({2}.0),
= DefaultControl,

stepInfoConcurrent = Set.fromList

stepInfoNonDep
stepInfoRaces

Thread {2}.0

Thread {2}.0
Thread {2}.0
Thread {2}.0

[0, {1x, {231,

=1,
=10

TxCommitted [1 []

Effect { reads
Unblocked []
Deschedule Yield

fromList [TVarId 0] }

Effect VectorClock [Thread {2}.0,

Effect { reads

Thread [].2]
fromList [TVarId 0] }



[] . 0 create TVar 0O

\

.1
\

.2
\

Example: default schedule

data StepInfo = StepInfo {

stepInfoStep = Step ({2}.0),
stepInfoControl = DefaultControl,
stepInfoConcurrent = Set.fromList
o, {13,
stepInfoNonDep = [,
stepInfoRaces =0
¥

Os - Thread {2}.1 - Say False
Os - Thread {2}.1 - ThreadFinished
Os - Thread {2}.1 - Deschedule Terminated
Os - Thread {2}.1 - Effect VectorClock [Thread {2}.1,
Thread [].2]
Effect { }

[]3 {2}0 read TVar 0

v
2}.1



Example: default schedule

data StepInfo = StepInfo {

stepInfoStep = Step ({2}.0),
stepInfoControl = DefaultControl,
stepInfoConcurrent = Set.fromList
[] 0 create TVar 0O o, {131,
stepInfoNonDep = [{1}.0],
\1/ stepInfoRaces = [{1}.0]
¥
[].1
\1, Os - Thread {1}.0 - TxCommitted [TVarId 0] []
Effect { writes = fromList [TVarId 0] }
[]2 Os - Thread {1}.0 - Unblocked []

Os - Thread {1}.0 - Deschedule Yield
\1, Os - Thread {1}.0 - Effect VectorClock [Thread {1}.0,
Thread [].1]

[]3 {2}0 read TVar 0 {1}0 write TVar 0 Effect { writes = fromList [TVarId 0] }

v
2}.1



Example: default schedule

data StepInfo = StepInfo {

stepInfoStep = Step ({2}.0),
stepInfoControl = DefaultControl,
stepInfoConcurrent = Set.fromList
[] 0 create var o o1,
stepInfoNonDep = [{1}.0],
\1/ stepInfoRaces = [{1}.0]
¥
[].1
\1, 0s - Thread {1}.1 - ThreadFinished
Os - Thread {1}.1 - Deschedule Terminated
[] 2 Os - Thread {1}.1 - Effect VectorClock [Thread {1}.1,
’ Thread [].1]
\1, Effect { }
RacesFound [ControlAwait [ScheduleMod (RacyThreadId [2],0)
[]3 {2}0 read TVar 0 {]_}O write TVar 0 ControlDefault

[(RacyThreadId [1],0)1]1]

v ¥
2}.1 (1)1



Example: default schedule

data StepInfo = StepInfo {

stepInfoStep = Step ({2}.0),
stepInfoControl = DefaultControl,
stepInfoConcurrent = Set.fromList
[] 0 create TVar 0 Lo,

stepInfoNonDep = [{1}.01,

\1/ stepInfoRaces = [{1}.0]

¥
\1, 1s - Thread [].- thread delay timer - ThreadDelayFired

TimeoutId O

[]-2
\
[]3 {2}0 read TVar 0 {]_}O write TVar 0
7 v
{2).1 (1.1



Example: default schedule

data StepInfo = StepInfo {

stepInfoStep = Step ({2}.0),
stepInfoControl = DefaultControl,
stepInfoConcurrent = Set.fromList
[] 0 create TVar O tol,

stepInfoNonDep = [{1}.01,

\1/ stepInfoRaces = [{1}.0]

¥
\1/ 1s - Thread [].4 main - ThreadFinished

1s - Thread [] main - MainReturn () []

[]-2

\

[]3 {2}0 read TVar 0 {]_}O write TVar 0
% 7 v

14 {211 (111



Example: discovered schedule

[] . 0 create TVar 0O

Os

Os

Os
Os

Thread

Thread
Thread
Thread
Thread

—
=

0.
0
n]
0.

main

main
main
main
main

SimStart ControlAwait
[ScheduleMod (RacyThreadId [2],0)

ControlDefault
[(RacyThreadId [1],0)]]

TxCommitted [] [TVarId 0] Effect { }

Unblocked []

Deschedule Yield

Effect VectorClock [Thread [].0]

Effect { }



Example: discovered schedule

Os - Thread [].1 main - ThreadForked Thread {1}
Os - Thread [].1 main - Deschedule Yield
Os - Thread [].1 main - Effect VectorClock [Thread [].1]

[]0 create TVar 0 Effect { forks = [Thread {1}] }

\

[] .1 fork Thread {1}



Example: discovered schedule

[] . 0 create TVar 0O

\

.1
\

[] .2 fork Thread {2}

Os - Thread [].2 main - ThreadForked Thread {2}

Os - Thread [].2 main - Deschedule Yield

Os - Thread []1.2 main - Effect VectorClock [Thread [].2]

Effect { forks

[Thread {2}] }



Example: discovered schedule

[] . 0 create TVar 0O

\

.1
\

.2
\

[]3 threadDelay 100

Os - Thread [].3 main - ThreadDelay TimeoutId O Time 1s
Os - Thread [].3 main - Effect VectorClock [Thread [J.3]
Effect { }



Example: discovered schedule

O0s - Thread {2}.0 - FollowControl ControlAwait
[ScheduleMod (RacyThreadId [2],0)
ControlDefault
[] 0 create TVar 0 [(RacyThreadId [1],0)1]
. Os - Thread {2}.0 - AwaitControl Thread {2}.0 ControlFollow [(F
\1/ Os - Thread {2}.0 - Deschedule Sleep

.1
\

.2
\

(3



Example: discovered schedule

Os - Thread {1}.0

Reschedule ControlFollow
[(RacyThreadId [1]1,0)]1 []
Os - Thread {1}.0 - PerformAction Thread {1}.0
Os - Thread {1}.0 TxCommitted [TVarId 0] []
Effect { writes = fromList [TVarId 0] }

[] . 0 create TVar 0O

\1/ Os - Thread {1}.0 - Unblocked []
O0s - Thread {1}.0 - Deschedule Yield
[] 1 Os - Thread {1}.0 - Effect
. VectorClock [Thread {1}.0,
Thread [].1]
\1l Effect { writes = fromList [TVarId 0] }

[l:2
\
[]3 {].}0 write TVar 0



Example:

[] . 0 create TVar 0O

\

.1
\

.2
\

(3

discovered schedule

Os

Os
Os
Os

Thread {2}.0 - TxCommitted [1 []
Effect { reads = fromList [TVarId 0] }
Thread {2}.0 - Unblocked []
Thread {2}.0 - Deschedule Yield
Thread {2}.0 - Effect
VectorClock [Thread {1}.0,
Thread {2}.0,
Thread [].2]
Effect { reads = fromList [TVarId 0] }

{2}0 < {1}0 write TVar 0

read TVar 0



Example: discovered schedule

Os - Thread {2}.1 - Say True
Os - Thread {2}.1 - ThreadFinished
Os - Thread {2}.1 - Deschedule Terminated
Os - Thread {2}.1 - Effect
VectorClock [Thread {1}.0,
\1/ Thread {2}.1,
Thread [].2]

[] . 0 create TVar 0O

[]1 Effect { }

\

-2
\
[]3 {2}0 & {]_}0 write TVar 0

read TVar 0

2}.1



Example: discovered schedule

Os - Thread {1}.1 - ThreadFinished
Os - Thread {1}.1 - Deschedule Terminated
Os - Thread {1}.1 - Effect

[] 0 create TVar 0 VectorClock [Thread {1}.1,
. Thread [].1]
\1/ Effect { }
RacesFound [ControlAwait
[] 1 [ScheduleMod (RacyThreadId [2],0)
. ControlDefault
\1/ [(RacyThreadId [1],0)11]

-2
\
[]3 {2}0 & {]_}0 write TVar 0

read TVar 0 \l,

2}.1 (1)1



Example: discovered schedule

1s - Thread [].- thread delay timer -
ThreadDelayFired TimeoutId O

[] . 0 create TVar 0O

\
.1

\
[l:2

\
[]3 {2}0 < {]_}0 write TVar 0

read TVar 0 \l,

2}.1 (1)1



Example: discovered schedule

1s - Thread [].4 main - ThreadFinished
RacesFound []
1s - Thread [] main - MainReturn () []

[] . 0 create TVar 0O

\
.1
\
[l:2

\
[]3 {2}0 < {]_}0 write TVar 0

read TVar 0

v v ¥
N4 {2).1 (1)1



Example 2

sim :: I0Sim s ()
sim = do
exploreRaces
v0 <- newTVarIO False
vl <- newTVarIO False
forkIO (do atomically (writeTVar vO True) -- Thread {1}.0
atomically (readTVar v1) -— Thread {1}.1
>>= say . show . ("v1",))
forkIO (do atomically (writeTVar vl True) -- Thread {2}.0
atomically (readTVar vO) —-- Thread {2}.1
>>= say . show . ("v0",))
-— wait for both threads to terminate.
threadDelay 1_000_000



Example 2

Three schedules:



Three schedules:

® ControlDefault

("vO", False)

"vi", True)

Example 2



Example 2

Three schedules:

® ControlDefault

("vO", False)

"vi", True)

® ScheduleMod (RacyThreadId [2],1) ControlDefault
[(RacyThreadId [1]1,0)1]

("vO", True)
("vi", True)



Example 2

Three schedules:

® ControlDefault

("vO", False)

"vi", True)

® ScheduleMod (RacyThreadId [2],1) ControlDefault
[(RacyThreadId [1]1,0)1]

("vO", True)
("vi", True)

® ScheduleMod (RacyThreadId [2],0) ControlDefault
[(RacyThreadId [1],0), (RacyThreadId [1],1)]

("vO", True)
"v1", False)



Fair winds and following seas, me
mateys!

https://coot.me


https://coot.me

